IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6976301.html
   My bibliography  Save this article

The Method of Solving Structural Reliability with Multiparameter Correlation Problem

Author

Listed:
  • Juan Du
  • Haibin Li
  • Yun He

Abstract

Correlation among variables must be considered to accurately reflect the level of structure reliability. This problem has referential value to engineering practice and has attracted attention from relevant scholars and industries. In this paper, Copula function was used to build the joint probability density function among all variables. The key is to describe the correlation among variables, solve the correlation parameter of Copula function, and select the type of correlation structure among variables. The correlation parameter of Copula function was solved using Pearson linear correlation coefficient and maximum likelihood estimation. Based on the Akaike information criteria (AIC) and Bayesian information criteria (BIC), the optimal Copula function was selected, and the correlation structure among variables was determined. Monte Carlo method, which is based on Nataf inverse transformation, was introduced and used to evaluate the reliability of the correlated variable. Finally, this paper proposed the reliability calculation method based on dual neural network and direct integration by establishing the dual neural network of original and integrand functions. Compared with the Monte Carlo method, the proposed method can be utilized to efficiently and precisely calculate the structure reliability of multiple correlated random variables.

Suggested Citation

  • Juan Du & Haibin Li & Yun He, 2017. "The Method of Solving Structural Reliability with Multiparameter Correlation Problem," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-12, December.
  • Handle: RePEc:hin:jnlmpe:6976301
    DOI: 10.1155/2017/6976301
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/6976301.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/6976301.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/6976301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6976301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.