Author
Listed:
- He Li
- Quan Liu
- Xiaopu Ma
- Qinglei Qi
- Jinjiang Liu
- Pan Zhao
- Yang Yang
- Xingang Zhang
- Jun Li
Abstract
The energy problem and limited capacity of batteries have been fundamental constraints in many wireless sensor network (WSN) applications. For WSN, the wireless energy transmission technology based on magnetic resonance coupling is a promising energy transmission technology. To reduce the cost and energy consumption during charging in mobile wireless rechargeable sensor networks (MWRSNs), a cooperative mobile charging mechanism based on the Hamiltonian path is proposed in this paper. To improve the charging task interval, we study the use of a mobile charger (MC) as a mobile sink node to collect the data in this paper. Then, we used the sink and the charging sensors selected by the MC to construct the undirected complete graph. Finally, the Euclidean distance between nodes is used as the edge weight and a Hamiltonian loop is found by using the improved Clark–Wright (C-W) saving algorithm to solve the problem of charging a rechargeable sensor network. In addition to the energy usage efficiency (EUE) and the network lifetime, the average energy loss per unit time is considered as the evaluation index according to the impact of the MC on the energy consumption during charging. The simulation results show that the proposed scheme increases the average network lifetime, decreases the average energy loss per unit time, and improves the EUE.
Suggested Citation
He Li & Quan Liu & Xiaopu Ma & Qinglei Qi & Jinjiang Liu & Pan Zhao & Yang Yang & Xingang Zhang & Jun Li, 2022.
"Cooperative Recharge Scheme Based on a Hamiltonian Path in Mobile Wireless Rechargeable Sensor Networks,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-20, May.
Handle:
RePEc:hin:jnlmpe:6955713
DOI: 10.1155/2022/6955713
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6955713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.