IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/694809.html
   My bibliography  Save this article

A Novel Boundary Oversampling Algorithm Based on Neighborhood Rough Set Model: NRSBoundary-SMOTE

Author

Listed:
  • Feng Hu
  • Hang Li

Abstract

Rough set theory is a powerful mathematical tool introduced by Pawlak to deal with imprecise, uncertain, and vague information. The Neighborhood-Based Rough Set Model expands the rough set theory; it could divide the dataset into three parts. And the boundary region indicates that the majority class samples and the minority class samples are overlapped. On the basis of what we know about the distribution of original dataset, we only oversample the minority class samples, which are overlapped with the majority class samples, in the boundary region. So, the NRSBoundary-SMOTE can expand the decision space for the minority class; meanwhile, it will shrink the decision space for the majority class. After conducting an experiment on four kinds of classifiers, NRSBoundary-SMOTE has higher accuracy than other methods when C4.5, CART, and KNN are used but it is worse than SMOTE on classifier SVM.

Suggested Citation

  • Feng Hu & Hang Li, 2013. "A Novel Boundary Oversampling Algorithm Based on Neighborhood Rough Set Model: NRSBoundary-SMOTE," Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-10, November.
  • Handle: RePEc:hin:jnlmpe:694809
    DOI: 10.1155/2013/694809
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2013/694809.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2013/694809.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/694809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Jongwoo & Kim, Hongil & Geum, Youngjung, 2023. "How to succeed in the market? Predicting startup success using a machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    2. Winston Wang & Tun-Wen Pai, 2023. "Enhancing Small Tabular Clinical Trial Dataset through Hybrid Data Augmentation: Combining SMOTE and WCGAN-GP," Data, MDPI, vol. 8(9), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:694809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.