IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6942947.html
   My bibliography  Save this article

A Novel Virtual 3D Brush Model Based on Variable Stiffness and Haptic Feedback

Author

Listed:
  • Lei Huang
  • Zengxuan Hou

Abstract

A novel variable stiffness 3D virtual brush model and haptic decoration technique suitable for the surface of the three-dimensional objects for the automobile industry are introduced based on real-time haptic feedback mechanism using a 6 DOFs input device, and the haptic behavior of an expressive virtual 3D brush with variable stiffness is studied in detail for the first time. First, the intrinsic mechanism between the deformation of real hair brush and the applied external forces (such as the bending moment) is analyzed and studied in detail by introducing a bending spring to express the basic mechanical behavior for the 3D hair brush. Based on this brush model, many important painting features can be simulated, such as the softer brush tip, brush flattening, and bristle spreading. And a useful algorithm (named the weighted-average distance) for dealing with collision checking among the two objects (3D clay and the 3D brush) is presented. As long as the brush head is close to the 3D object, within a tolerance range, the computational tactile sensation force will be emerged, and the interactive painting process is implemented actually on the outer surface of the virtual object. We then calculate the related bounding ball for deformed 3D brush using a fast ball-expanding search algorithm to determine the virtual projection plane. Based on the real-time deformation about the virtual brush head at a sampling point, the 2D painting footprints, which is produced between the brush head and virtual projection painting plane, is calculated and rendered. Next, the 3D painting footprint could be easily produced via mapping the 2D painting footprints onto the surface of the 3D model in real time. Finally, the 3D painting strokes are formed via controlling the exerted force and overlapping the virtual 3D painting footprints with different shape, size, and following the moving direction of the 3D brush. Experiment result shows that the adopted method can effectively enhance reality to users, with high performance.

Suggested Citation

  • Lei Huang & Zengxuan Hou, 2020. "A Novel Virtual 3D Brush Model Based on Variable Stiffness and Haptic Feedback," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, February.
  • Handle: RePEc:hin:jnlmpe:6942947
    DOI: 10.1155/2020/6942947
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6942947.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6942947.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6942947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6942947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.