IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6897965.html
   My bibliography  Save this article

Feature Selection and Model Fusion Approach for Predicting Urban Macro Travel Time

Author

Listed:
  • D. D. Li
  • D. X. Yu
  • Z. J. Qu
  • S. H. Yu

Abstract

With the rapid growth of car ownership, traffic congestion has become one of the most serious social problems. For us, accurate real-time travel time predictions are especially important for easing traffic congestion, enabling traffic control and management, and traffic guidance. In this paper, we propose a method to predict urban road travel time by combining XGBoost and LightGBM machine learning models. In order to obtain a relatively complete data set, we mine the GPS data of Beijing and combine them with the weather feature to consider the obtained 14 features as candidate features. By processing and analyzing the data set, we discussed in detail the correlation between each feature and the travel time and the importance of each feature in the model prediction results. Finally, the 10 important features screened by the LightGBM and XGBoost models were used as key features. We use the full feature set and the key feature set as input to the model to explore the effect of different feature combinations on the prediction accuracy of the model and then compare the prediction results of the proposed fusion model with a single model. The results show that the proposed fusion model has great advantages to urban travel time prediction.

Suggested Citation

  • D. D. Li & D. X. Yu & Z. J. Qu & S. H. Yu, 2020. "Feature Selection and Model Fusion Approach for Predicting Urban Macro Travel Time," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-13, June.
  • Handle: RePEc:hin:jnlmpe:6897965
    DOI: 10.1155/2020/6897965
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6897965.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6897965.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6897965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabavi, S.M. & Vahdani, Behnam & Nadjafi, B. Afshar & Adibi, M.A., 2022. "Synchronizing victim evacuation and debris removal: A data-driven robust prediction approach," European Journal of Operational Research, Elsevier, vol. 300(2), pages 689-712.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6897965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.