IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/686501.html
   My bibliography  Save this article

Using a Novel Grey System Model to Forecast Natural Gas Consumption in China

Author

Listed:
  • Lifeng Wu
  • Sifeng Liu
  • Haijun Chen
  • Na Zhang

Abstract

Accurate prediction of the future energy needs is crucial for energy management. This work presents a novel grey forecasting model that integrates the principle of new information priority into accumulated generation. This grey model can better reflect the priority of the new information theoretically. The results of two practical examples demonstrate that this grey model provides very remarkable short-term predication performance compared with traditional grey forecasting model for limited data set forecasting. It is applied to Chinese gas consumption forecasting to show its superiority and applicability.

Suggested Citation

  • Lifeng Wu & Sifeng Liu & Haijun Chen & Na Zhang, 2015. "Using a Novel Grey System Model to Forecast Natural Gas Consumption in China," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-7, January.
  • Handle: RePEc:hin:jnlmpe:686501
    DOI: 10.1155/2015/686501
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/686501.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/686501.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/686501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xin & Deng, Yanqiao & Ma, Minda, 2024. "A novel kernel ridge grey system model with generalized Morlet wavelet and its application in forecasting natural gas production and consumption," Energy, Elsevier, vol. 287(C).
    2. Luo, Xilin & Duan, Huiming & Xu, Kai, 2021. "A novel grey model based on traditional Richards model and its application in COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Liu, Chong & Wu, Wen-Ze & Xie, Wanli & Zhang, Jun, 2020. "Application of a novel fractional grey prediction model with time power term to predict the electricity consumption of India and China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
    5. Xie, Minghua & Yi, Xiangyu & Liu, Kui & Sun, Chuanwang & Kong, Qingbao, 2023. "How much natural gas does China need: An empirical study from the perspective of energy transition," Energy, Elsevier, vol. 266(C).
    6. Duan, Huiming & Pang, Xinyu, 2021. "A multivariate grey prediction model based on energy logistic equation and its application in energy prediction in China," Energy, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:686501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.