Author
Abstract
As computer and multimedia technology advances and as the variety of knowledge display forms expands, there are more ways for people to obtain knowledge and information. The best course in musicology is voice performance. A crucial issue is how to select and categorize valuable curriculum materials of varying quality levels. This paper implements an automatic classification and integration algorithm for vocal performance learning materials using machine learning technology and tests it on the corresponding dataset, beginning with multidimensional association rule mining technology and the premise that multimedia data contain numerous useful characteristics. Experiments demonstrate the classification precision and data integration capacity of the proposed algorithm. Vocal performance is the most engaging course in musicology. To cultivate corresponding talents, we can rely on college and university offline courses and the rapidly developing multimedia technology to train talents online. An important topic is how to efficiently select and classify curriculum materials of varying quality in order to provide them to students with different learning needs. We can achieve the automatic classification of the course content by leveraging the superior learning capabilities of artificial intelligence and machine learning technology. Consequently, this paper implements an automatic classification and integration algorithm for vocal performance learning materials using machine learning-related technology and conducts an experimental test on the corresponding dataset, beginning with multidimensional association rule mining technology and the perspective that multimedia information itself contains a large number of useful characteristics. Experiments demonstrate that the proposed algorithm has a high level of classification accuracy and data integration capability.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6863141. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.