Author
Listed:
- Muhammad Ahmed Hassan
- Asim Rehmat
- Muhammad Usman Ghani Khan
- Muhammad Haroon Yousaf
- Muhammad Fazal Ijaz
Abstract
Automatic speech recognition (ASR) has ensured a convenient and fast mode of communication between humans and computers. It has become more accurate over the passage of time. However, in majority of ASR systems, the models have been trained using native English accents. While they serve best for native English speakers, their accuracy drops drastically for non-native English accents. Our proposed model covers this limitation for non-native English accents. We fine-tuned the DeepSpeech2 model, pretrained on the native English accent dataset by LibriSpeech. We retrain the model on a subset of the common voice dataset having only South Asian accents using the proposed novel loss function. We experimented with three different layer configurations of model to learn the best features for South Asian accents. Three evaluation parameters, word error rate (WER), match error rate (MER), and word information loss (WIL) were used. The results show that DeepSpeech2 can perform significantly well for South Asian accents if the weights of initial convolutional layers are retained while updating weights of deeper layers in the model (i.e., RNN and fully connected layers). Our model gave WER of 18.08%, which is the minimum error achieved for non-native English accents in comparison with the original model.
Suggested Citation
Muhammad Ahmed Hassan & Asim Rehmat & Muhammad Usman Ghani Khan & Muhammad Haroon Yousaf & Muhammad Fazal Ijaz, 2022.
"Improvement in Automatic Speech Recognition of South Asian Accent Using Transfer Learning of DeepSpeech2,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, October.
Handle:
RePEc:hin:jnlmpe:6825555
DOI: 10.1155/2022/6825555
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6825555. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.