IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6807378.html
   My bibliography  Save this article

Condition Detection and Maintenance of Steel-Fiber-Reinforced Concrete Based on Markov Random Matrix

Author

Listed:
  • Hongjiang Liu
  • Mingyan Liu
  • Yun Li
  • Ning Cao

Abstract

The condition detection and maintenance of steel-fiber-reinforced concrete (SFRC) involves a combination of qualitative and quantitative assessment methods, while the ineffectiveness of the Markov chain can analyze the fluctuation law of gray fitting accuracy indexes and use this to correct the detection results of the residual gray model, having outstanding advantages. On the basis of summarizing and analyzing previous works of literature, this study expounded the research status and significance of the condition detection and maintenance of SFRC, elaborated the development background, current status, and future challenges of the Markov random matrix, introduced the methods and principles of feature extraction network and loss function, proposed the detection process analysis of SFRC based on Markov random matrix, constructed a detection model of SFRC, analyzed the maintenance monitoring method of SFRC based on Markov random matrix, discussed the maintenance effect evaluation of SFRC, and finally carried out a simulation experiment and its result analysis. The results show that the most important feature of Markov random matrices is the absence of aftereffects, which means that the condition evolution of SFRC can be regarded as a multiple Markov chain. When carrying out the dynamic condition maintenance of SFRC, the maintenance object should be first determined, then the condition detection of the object should be carried out to obtain information characteristics and to assess its condition, and then the condition should be compared with the condition set to determine its position in the set to make fault prediction based on the Markov chain constructed from the set of conditions. Under other excepted standards and maintenance conditions with the increase of steel fiber content, the flexural strength of concrete decreased first and then increased, but the difference of maintenance conditions had obvious influence on the flexural strength of concrete. The results of this paper provide a reference for further research on the condition detection and maintenance of SFRC based on the Markov random matrix.

Suggested Citation

  • Hongjiang Liu & Mingyan Liu & Yun Li & Ning Cao, 2022. "Condition Detection and Maintenance of Steel-Fiber-Reinforced Concrete Based on Markov Random Matrix," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, June.
  • Handle: RePEc:hin:jnlmpe:6807378
    DOI: 10.1155/2022/6807378
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6807378.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6807378.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6807378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6807378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.