Author
Listed:
- Tianxiang Lei
- Fangcheng Lv
- Jiaomin Liu
- Jiahao Feng
- Ruien Zhang
- Jun Peng
Abstract
The use of carbon nanotubes (CNTs) as the reinforcing phase to prepare copper-based composite materials can improve the strength and high conductivity of copper-based conductors. In order to analyze the effect of surface oxidation modification on the structural properties of carbon nanotubes and its strengthening effect on composite materials, this article combines heterogeneous copolymerization liquid phase mixing method and spark plasma sintering molding method; prepares the carbon nanotubes/copper composite materials using carbon nanotubes under different oxidation treatment conditions as the reinforcing phase (the volume fraction of carbon nanotubes is 3%); and characterizes the microstructure, mechanical properties, and electrical and thermal conductivity of the composite material. Studies have shown that the tensile strength and hardness of composite materials first increase with the increase of CNT oxidation treatment time and then decrease with the increase of oxidation treatment time. When the oxidation treatment time is 4 h, CNTs are uniformly dispersed in the matrix while maintaining good structural integrity and load-bearing capacity, and the composite material has the highest mechanical properties. The tensile strength of the composite material made of 80† nm CNTs reaches 452.4 MPa, which is 1.6 times that of pure copper, and the hardness reaches 127.4HV, which is twice that of pure copper. The electrical conductivity and thermal conductivity of the composite material first increase with the increase of the oxidation treatment time of carbon nanotubes and then decrease with the increase of the oxidation treatment time. The 80 nm CNT reinforced composite material has better CNT dispersion performance and higher conductivity than that of 15 nm CNT preparation. The electrical conductivity of the composite material reaches the maximum value of 92% IACS when the CNT oxidation treatment time is 4 hours, which is 95% of the pure copper sample, and the electrical conductivity is significantly better than that of the CNT/Cu composite material and copper alloy prepared by other methods. The thermal conductivity of composite materials is lower than that of pure copper. The thermal conductivity of carbon nanotubes with an oxidation treatment time of 2 h decreases most obviously, indicating that the thermal resistance generated by the interface and agglomeration phases in the composite material affects its thermal conductivity.
Suggested Citation
Tianxiang Lei & Fangcheng Lv & Jiaomin Liu & Jiahao Feng & Ruien Zhang & Jun Peng, 2022.
"Effect of Surface Modification of Carbon Nanotubes on the Properties of High-Strength and High-Conductivity Copper Matrix Composites,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, June.
Handle:
RePEc:hin:jnlmpe:6752732
DOI: 10.1155/2022/6752732
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6752732. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.