Author
Listed:
- Shuang Sun
- Li Liang
- Ming Li
- Xin Li
Abstract
This paper is intended to introduce a two-stage detection method to solve the multidamage problem in bridges. Vibration analysis is conducted to acquire the dynamic fingerprints which are regarded as information sources. Bayesian fusion is used to integrate these sources and preliminarily locate the damage. Then, the RSNB method which combines rough set theory and Naive-Bayes classifier is proposed to simplify the sample dimensions and fuse the remaining attributes for damage extent detection. A numerical simulation of a real structure, the Sishui Bridge in Shenyang, China, is conducted to validate the effectiveness of the proposed detection method. Data fusion based method is compared with single-valued index method at the damage localization stage. The proposed RSNB method is compared with the Back Propagation Neural Network (BPNN) method at the damage qualification stage. The results show that the proposed two-stage damage detection method has better performances in regard to transparency, accuracy, efficiency, noise robustness, and stability. Furthermore, an ambient excitation modal test was carried out on the bridge to obtain the vibration responses and assess the damage condition with the proposed method. This novel approach is applicable for early damage detection and provides a basis for bridge management and maintenance.
Suggested Citation
Shuang Sun & Li Liang & Ming Li & Xin Li, 2018.
"Multidamage Detection of Bridges Using Rough Set Theory and Naive-Bayes Classifier,"
Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-13, May.
Handle:
RePEc:hin:jnlmpe:6752456
DOI: 10.1155/2018/6752456
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6752456. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.