IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6740523.html
   My bibliography  Save this article

Incremental Multiple Hidden Layers Regularized Extreme Learning Machine Based on Forced Positive-Definite Cholesky Factorization

Author

Listed:
  • Jingyi Liu
  • Ba Tuan Le

Abstract

The theory and implementation of extreme learning machine (ELM) prove that it is a simple, efficient, and accurate machine learning method. Compared with other single hidden layer feedforward neural network algorithms, ELM is characterized by simpler parameter selection rules, faster convergence speed, and less human intervention. The multiple hidden layer regularized extreme learning machine (MRELM) inherits these advantages of ELM and has higher prediction accuracy. In the MRELM model, the number of hidden layers is randomly initiated and fixed, and there is no iterative tuning process. However, the optimal number of hidden layers is the key factor to determine the generalization ability of MRELM. Given this situation, it is obviously unreasonable to determine this number by trial and random initialization. In this paper, an incremental MRELM training algorithm (FC-IMRELM) based on forced positive-definite Cholesky factorization is put forward to solve the network structure design problem of MRELM. First, an MRELM-based prediction model with one hidden layer is constructed, and then a new hidden layer is added to the prediction model in each training step until the generalization performance of the prediction model reaches its peak value. Thus, the optimal network structure of the prediction model is determined. In the training procedure, forced positive-definite Cholesky factorization is used to calculate the output weights of MRELM, which avoids the calculation of the inverse matrix and Moore-Penrose generalized inverse of matrix involved in the training process of hidden layer parameters. Therefore, FC-IMRELM prediction model can effectively reduce the computational cost brought by the process of increasing the number of hidden layers. Experiments on classification and regression problems indicate that the algorithm can be effectively used to determine the optimal network structure of MRELM, and the prediction model training by the algorithm has excellent performance in prediction accuracy and computational cost.

Suggested Citation

  • Jingyi Liu & Ba Tuan Le, 2019. "Incremental Multiple Hidden Layers Regularized Extreme Learning Machine Based on Forced Positive-Definite Cholesky Factorization," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, April.
  • Handle: RePEc:hin:jnlmpe:6740523
    DOI: 10.1155/2019/6740523
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/6740523.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/6740523.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6740523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6740523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.