Author
Listed:
- Yue Zhu
- Ho Yin Kan
- Lianhui Li
Abstract
With the development of aviation industry, a series of problems have appeared in aviation and airspace, among which the most prominent problem is the congestion of aviation and airspace. Airspace congestion has become a major problem in the development of civil aviation in China. Especially in the central and eastern regions of China, airspace congestion is becoming more and more serious. To better solve the problem of airspace congestion, rough set theory and the Fuzzy C-means (FCM) model are first analyzed. By analyzing the temporal and spatial characteristics of traffic congestion in the control sector, a multisector traffic congestion identification model is established based on radar track data. Four multisector congestion characteristics including equivalent traffic volume, proximity, saturation, and traffic density are established. FCM and rough set theory are used to classify and identify sector congestion. Finally, the model based on FCM-rough set theory is compared with other methods based on the data of the regional control sector in northwest China. The experimental results show that the congestion recognition rate of the model is 92.6%, 93.5%, and 94.2%, and the congestion misjudgment rate is 1.5%, 1.2%, and 1.3%, respectively. Hence, the multisector congestion recognition model has a high recognition rate and a low misjudgment rate, and the overall discrimination result is relatively stable. By comparing the proposed method with other methods, it is concluded that the recognition accuracy of the model based on FCM theory is superior to other methods. In summary, the congestion situation of the sector is affected by a variety of macro- and micro-characteristics of the sector, and the congestion identification model is feasible and efficient. Multisector traffic congestion identification has certain application value for airspace planning, air traffic control-assisted decision making, and air traffic flow management. This work can optimize the aviation and airspace management system and provide relevant suggestions for the study of aviation and airspace congestion.
Suggested Citation
Yue Zhu & Ho Yin Kan & Lianhui Li, 2022.
"Aviation and Airspace Management under Rough Set Theory,"
Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-12, September.
Handle:
RePEc:hin:jnlmpe:6736884
DOI: 10.1155/2022/6736884
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6736884. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.