IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6692626.html
   My bibliography  Save this article

A New Hybrid Model for Hourly Solar Radiation Forecasting Using Daily Classification Technique and Machine Learning Algorithms

Author

Listed:
  • Hamza Ali-Ou-Salah
  • Benyounes Oukarfi
  • Khalid Bahani
  • Mohammed Moujabbir

Abstract

Photovoltaic power generation depends significantly on solar radiation, which is variable and unpredictable in nature. As a result, the production of electricity from photovoltaic power cannot be guaranteed permanently during the operational phase. Forecasting global solar radiation can play a key role in overcoming this drawback of intermittency. This paper proposes a new hybrid method based on machine learning (ML) algorithms and daily classification technique to forecast 1 h ahead of global solar radiation in the city of Évora. Firstly, several comparative studies have been done between random forest (RF), gradient boosting (GB), support vector machines (SVM), and artificial neural network (ANN). These comparisons were made using annual, seasonal, and daily testing sets in order to determine the best ML algorithm under different meteorological conditions. Subsequently, the daily classification technique has been applied to classify the original training set into sunny and cloudy training subsets in order to enhance the forecasting accuracy. The evaluation of the proposed ML algorithms was carried out using the normalized root mean square error (nRMSE) and the normalized absolute mean error (nMAE). The results of the seasonal comparison show that the RF model performs well for spring and autumn seasons with nRMSE equaling 22.53% and 23.42%, respectively. While the SVR model gives good results for winter and summer seasons with nRMSE equaling 24.31% and 8.41%, respectively. In addition, the daily comparison demonstrates that the RF model performs well for cloudy days with nRMSE = 41.40%, while the SVR model yields good results for sunny days with nRMSE = 8.88%. The results show that the daily classification technique enhances the forecasting accuracy of ML models. Furthermore, this study demonstrates that the forecasting accuracy of ML algorithms depends significantly on sky conditions.

Suggested Citation

  • Hamza Ali-Ou-Salah & Benyounes Oukarfi & Khalid Bahani & Mohammed Moujabbir, 2021. "A New Hybrid Model for Hourly Solar Radiation Forecasting Using Daily Classification Technique and Machine Learning Algorithms," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, March.
  • Handle: RePEc:hin:jnlmpe:6692626
    DOI: 10.1155/2021/6692626
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6692626.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6692626.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6692626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sourav Malakar & Saptarsi Goswami & Bhaswati Ganguli & Amlan Chakrabarti & Sugata Sen Roy & K. Boopathi & A. G. Rangaraj, 2022. "Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering," Energies, MDPI, vol. 15(10), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6692626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.