Author
Listed:
- Lingjuan Chen
- Yu Wang
- Dongfang Ma
Abstract
Accurate prediction of travellers’ day-to-day departure time and route choice is critical in advanced traffic management systems. There have been several related works about route choice with the assumption that the departure time for individual travellers is known beforehand. With real-time traffic state information provided by navigation systems and previous historical experience, travellers will dynamically update their departure time, which is neglected in existing works. In this study, we aim to describe travellers’ spatial-temporary choice behaviour taking navigation information into account and propose a bounded-rational day-to-day dynamic learning and adjustment model. The new model contains three steps. First, the real-time navigation guidance on each discrete day is obtained, and the self-learned experience of travellers’ choices with navigation information is presented; then, the day-to-day revision process of the choices is derived to maximize departure and route choice prospect; next, by aggregating each individual’s behaviour and calculating route choice probability, a bounded-rational continuous day-to-day dynamic model is provided. Numerical experiments suggest that the proposed model converges to a spatial-temporal oscillating equilibrium not a fixed-point stable status, and the final equilibrium trend is different from classical user equilibrium. The findings of the study are helpful to improve the prediction accuracy of traffic state in urban street networks.
Suggested Citation
Lingjuan Chen & Yu Wang & Dongfang Ma, 2021.
"A Dynamic Day-To-Day Departure Time and Route Choice Model for Bounded-Rational Individuals,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, April.
Handle:
RePEc:hin:jnlmpe:6686843
DOI: 10.1155/2021/6686843
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6686843. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.