Author
Listed:
- Vi Nguyen
- Faisal Altarazi
- Thanh Tran
- Jie Hu
Abstract
The research presents an analysis and comparison of the Taguchi Design and Response Surface Methodology (RSM) in optimizing the laser cutting machine parameters on dimension accuracy for stainless steel products. The paper studies effects of input factors such as cutting speed, nitrogen pressure, power, and frequency on the quality cutting of stainless steel (304) specimens. In this paper, two objectives are examined: targeting laser-cut edge to perpendicular 90 degrees and maximizing the cutting accuracy. The paper proposes a simple formula to optimize both targets by minimizing one new function definition, i.e., dimensional error. An L9 orthogonal array of Taguchi Methodology is adopted to minimize the number of experiments and shorten analysis time to achieve the optimal parameters. These results are compared with RSM. Box–Behnken Design (BBD) type of RSM requires more experiments than the Taguchi approach. RSM regression models as the quadratic functions of the control factors are developed to minimize the dimensional error of cutting products. Then, Analysis of Variance (ANOVA) and graphs will be analyzed to determine the influences of variables on the responses. Both Taguchi’s method and RSM found that the most influential factor on dimension accuracy is cutting speed, followed by laser power. While Taguchi provides good graphic visualization for quickly predicting the optimum condition, it cannot examine the interaction effects as RSM due to the lack of data. Besides, RSM reveals the percentage contribution of factors on dimensional error. Cutting speed has a maximum contribution, i.e., 39% of the total. The interaction of cutting speed and power contributes 16% of the total. In this study, RSM can predict optimum conditions more accurately than Taguchi. There are misleading results from the Taguchi method compared with RSM. However, the difference between these objective values is insignificant. The validation experiments show that the Taguchi method can be a practical approach for optimization problems. It can help reduce cost and time and achieve the desired optimal outputs. With cutting problems requiring high precision, the RSM method is highly recommended for identifying optimal parameter settings and interaction effects. With problems that their experimental runs consume high cost and time, Taguchi can be a suitable method for screening the significant variables. Although Taguchi and RSM are used widely for optimization problems in many fields, choosing the right methodology for various objectives is still a concern with different arguments and needs further research. Therefore, this study could be an adequate reference for parameter optimization problems in various fields.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6677586. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.