IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6667614.html
   My bibliography  Save this article

Design of Real-Time Control Based on DP and ECMS for PHEVs

Author

Listed:
  • Wei Wang
  • Zhenjiang Cai
  • Shaofei Liu

Abstract

A real-time control is proposed for plug-in-hybrid electric vehicles (PHEVs) based on dynamic programming (DP) and equivalent fuel consumption minimization strategy (ECMS) in this study. Firstly, the resulting controls of mode selection and series mode are stored in tables through offline simulation of DP, and the parallel HEV mode uses ECMS-based real-time algorithm to reduce the application of maps and avoid manual adjustment of parameters. Secondly, the feedback energy management system (FMES) is built based on feedback from SoC, which takes into account the charge and discharge reaction (CDR) of the battery, and in order to make full use of the energy stored in the battery, the reference SoC is introduced. Finally, a comparative simulation on the proposed real-time controller is conducted against DP, the results show that the controller has a good performance, and the fuel consumption value of the real-time controller is close to the value using DP. The engine operating conditions are concentrated in the low fuel consumption area of the engine, and when the driving distance is known, the SoC can follow the reference SoC well to make full use of the energy stored in the battery.

Suggested Citation

  • Wei Wang & Zhenjiang Cai & Shaofei Liu, 2021. "Design of Real-Time Control Based on DP and ECMS for PHEVs," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, February.
  • Handle: RePEc:hin:jnlmpe:6667614
    DOI: 10.1155/2021/6667614
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6667614.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6667614.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6667614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6667614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.