IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6667275.html
   My bibliography  Save this article

Automatic Selection and Parameter Configuration of Big Data Software Core Components Based on Retention Pattern

Author

Listed:
  • Ping Xu

Abstract

This paper conducts an in-depth analysis and research on the automatic selection and parameter configuration of the core components of Big Data software by using the retention model and the automatic selection of Big Data components by establishing a standardized requirement index and using the decision tree model to solve the problem of component selection in Big Data application development. By establishing standardized demand indicators and based on the retention model, a data transmission intermediate platform for bidirectional data detection is proposed based on the three demands of user input: storage, computation, and analysis, as well as the problem of undetectable packet loss in data transmission of existing IoT and Web service platforms. The data communication module of the data transmission intermediate platform enables mutual monitoring and detection of data interaction between IoT smart terminals and cloud platforms. The retention mode is built separately to realize the automatic selection of Big Data components. In this paper, we start from several mainstream distributed storage systems and use Cassandra as an example for experiments and tests. We use the multiple regression fitting method to build a corresponding performance model for hardware parameters, take user requirements as input, and use the performance model to configure system hardware parameters; by studying its system principle, architecture, features, and application scenarios, we build a software parameter configuration knowledge base to guide the software. This solves the difficult problem of selecting, deploying, and configuring parameters for Big Data applications.

Suggested Citation

  • Ping Xu, 2021. "Automatic Selection and Parameter Configuration of Big Data Software Core Components Based on Retention Pattern," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
  • Handle: RePEc:hin:jnlmpe:6667275
    DOI: 10.1155/2021/6667275
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6667275.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6667275.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6667275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6667275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.