IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6665743.html
   My bibliography  Save this article

A Combined Convection Carreau–Yasuda Nanofluid Model over a Convective Heated Surface near a Stagnation Point: A Numerical Study

Author

Listed:
  • Azad Hussain
  • Aysha Rehman
  • Sohail Nadeem
  • M. Y. Malik
  • Alibek Issakhov
  • Lubna Sarwar
  • Shafiq Hussain

Abstract

The focus of this manuscript is on two-dimensional mixed convection non-Newtonian nanofluid flow near stagnation point over a stretched surface with convectively heated boundary conditions. The modeled equation representing nonlinear flow is transformed into a system of ordinary differential equations by implementing appropriate similarity transformations. The generated structure is numerically solved by applying the bvp4c method. Consequences of various involved parameters, e.g., stretching parameter, mixed convection parameter, thermophoresis parameter, Brownian movement parameter, Lewis number, Weissenberg number, Prandtl number, Biot number, buoyancy ratio parameter, mass and heat transport rates on temperature and velocity, the stretched surface, and nanoparticle concentration patterns are analyzed. Outcomes are shown graphically and displayed in tables. Velocity fluctuations are responded to by growing parameters of mixed convection and Weissenberg number. Concentration and thermal fields are also discovered for the Prandtl number. There are also flow line diagrams to analyze the behavior.

Suggested Citation

  • Azad Hussain & Aysha Rehman & Sohail Nadeem & M. Y. Malik & Alibek Issakhov & Lubna Sarwar & Shafiq Hussain, 2021. "A Combined Convection Carreau–Yasuda Nanofluid Model over a Convective Heated Surface near a Stagnation Point: A Numerical Study," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, April.
  • Handle: RePEc:hin:jnlmpe:6665743
    DOI: 10.1155/2021/6665743
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6665743.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6665743.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6665743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azad Hussain & Mubashar Arshad & Aysha Rehman & Ali Hassan & Sayed K. Elagan & Nawal A. Alshehri, 2021. "Heat Transmission of Engine-Oil-Based Rotating Nanofluids Flow with Influence of Partial Slip Condition: A Computational Model," Energies, MDPI, vol. 14(13), pages 1-13, June.
    2. Azad Hussain & Mubashar Arshad & Aysha Rehman & Ali Hassan & S. K. Elagan & Hijaz Ahmad & Amira Ishan, 2021. "Three-Dimensional Water-Based Magneto-Hydrodynamic Rotating Nanofluid Flow over a Linear Extending Sheet and Heat Transport Analysis: A Numerical Approach," Energies, MDPI, vol. 14(16), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6665743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.