IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6655510.html
   My bibliography  Save this article

XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring

Author

Listed:
  • Chao Qin
  • Yunfeng Zhang
  • Fangxun Bao
  • Caiming Zhang
  • Peide Liu
  • Peipei Liu

Abstract

Personal credit scoring is a challenging issue. In recent years, research has shown that machine learning has satisfactory performance in credit scoring. Because of the advantages of feature combination and feature selection, decision trees can match credit data which have high dimension and a complex correlation. Decision trees tend to overfitting yet. eXtreme Gradient Boosting is an advanced gradient enhanced tree that overcomes its shortcomings by integrating tree models. The structure of the model is determined by hyperparameters, which is aimed at the time-consuming and laborious problem of manual tuning, and the optimization method is employed for tuning. As particle swarm optimization describes the particle state and its motion law as continuous real numbers, the hyperparameter applicable to eXtreme Gradient Boosting can find its optimal value in the continuous search space. However, classical particle swarm optimization tends to fall into local optima. To solve this problem, this paper proposes an eXtreme Gradient Boosting credit scoring model that is based on adaptive particle swarm optimization. The swarm split, which is based on the clustering idea and two kinds of learning strategies, is employed to guide the particles to improve the diversity of the subswarms, in order to prevent the algorithm from falling into a local optimum. In the experiment, several traditional machine learning algorithms and popular ensemble learning classifiers, as well as four hyperparameter optimization methods (grid search, random search, tree-structured Parzen estimator, and particle swarm optimization), are considered for comparison. Experiments were performed with four credit datasets and seven KEEL benchmark datasets over five popular evaluation measures: accuracy, error rate (type I error and type II error), Brier score, and score. Results demonstrate that the proposed model outperforms other models on average. Moreover, adaptive particle swarm optimization performs better than the other hyperparameter optimization strategies.

Suggested Citation

  • Chao Qin & Yunfeng Zhang & Fangxun Bao & Caiming Zhang & Peide Liu & Peipei Liu, 2021. "XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-18, March.
  • Handle: RePEc:hin:jnlmpe:6655510
    DOI: 10.1155/2021/6655510
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6655510.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6655510.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6655510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zehao Xie & Qihong Feng & Jiyuan Zhang & Xiaoxuan Shao & Xianmin Zhang & Zenglin Wang, 2021. "Prediction of Conformance Control Performance for Cyclic-Steam-Stimulated Horizontal Well Using the XGBoost: A Case Study in the Chunfeng Heavy Oil Reservoir," Energies, MDPI, vol. 14(23), pages 1-22, December.
    2. Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
    3. Teng, Huei-Wen & Kang, Ming-Hsuan & Lee, I-Han & Bai, Le-Chi, 2024. "Bridging accuracy and interpretability: A rescaled cluster-then-predict approach for enhanced credit scoring," International Review of Financial Analysis, Elsevier, vol. 91(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6655510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.