IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6648462.html
   My bibliography  Save this article

Bayesian Analysis of Record Statistic from the Inverse Weibull Distribution under Balanced Loss Function

Author

Listed:
  • Fuad S. Al-Duais

Abstract

The main contribution of this work is to develop a linear exponential loss function (LINEX) to estimate the scale parameter and reliability function of the inverse Weibull distribution (IWD) based on lower record values. We do this by merging a weight into LINEX to produce a new loss function called weighted linear exponential loss function (WLINEX). We then use WLINEX to derive the scale parameter and reliability function of the IWD. Subsequently, we discuss the balanced loss functions for three different types of loss function, which include squared error (SE), LINEX, and WLINEX. The majority of previous scholars determined the weighted balanced coefficients without mathematical justification. One of the main contributions of this work is to utilize nonlinear programming to obtain the optimal values of the weighted coefficients for balanced squared error (BSE), balanced linear exponential (BLINEX), and balanced weighted linear exponential (BWLINEX) loss functions. Furthermore, to examine the performance of the proposed methods—WLINEX and BWLINEX—we conduct a Monte Carlo simulation. The comparison is between the proposed methods and other methods including maximum likelihood estimation, SE loss function, LINEX, BSE, and BLINEX. The results of simulation show that the proposed models BWLINEX and WLINEX in this work have the best performance in estimating scale parameter and reliability, respectively, according to the smallest values of mean SE. This result means that the proposed approach is promising and can be applied in a real environment.

Suggested Citation

  • Fuad S. Al-Duais, 2021. "Bayesian Analysis of Record Statistic from the Inverse Weibull Distribution under Balanced Loss Function," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-9, March.
  • Handle: RePEc:hin:jnlmpe:6648462
    DOI: 10.1155/2021/6648462
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6648462.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6648462.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6648462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6648462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.