Author
Listed:
- Jing Cai
- Ge Zhou
- Mengkun Dong
- Xinlei Hu
- Guangda Liu
- Weiguang Ni
Abstract
To solve the problem of real-time arrhythmia classification, this paper proposes a real-time arrhythmia classification algorithm using deep learning with low latency, high practicality, and high reliability, which can be easily applied to a real-time arrhythmia classification system. In the algorithm, a classifier detects the QRS complex position in real time for heartbeat segmentation. Then, the ECG_RRR feature is constructed according to the heartbeat segmentation result. Finally, another classifier classifies the arrhythmia in real time using the ECG_RRR feature. This article uses the MIT-BIH arrhythmia database and divides the 44 qualified records into two groups (DS1 and DS2) for training and evaluation, respectively. The result shows that the recall rate, precision rate, and overall accuracy of the algorithm’s interpatient QRS complex position prediction are 98.0%, 99.5%, and 97.6%, respectively. The overall accuracy for 5-class and 13-class interpatient arrhythmia classification is 91.5% and 75.6%, respectively. Furthermore, the real-time arrhythmia classification algorithm proposed in this paper has the advantages of practicability and low latency. It is easy to deploy the algorithm since the input is the original ECG signal with no feature processing required. And, the latency of the arrhythmia classification is only the duration of one heartbeat cycle.
Suggested Citation
Jing Cai & Ge Zhou & Mengkun Dong & Xinlei Hu & Guangda Liu & Weiguang Ni, 2021.
"Real-Time Arrhythmia Classification Algorithm Using Time-Domain ECG Feature Based on FFNN and CNN,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, May.
Handle:
RePEc:hin:jnlmpe:6648432
DOI: 10.1155/2021/6648432
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6648432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.