IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6645978.html
   My bibliography  Save this article

Effect of Detuning of Clamping Force of Tie Rods on Dynamic Performance of Rod-Fastened Jeffcott Rotor

Author

Listed:
  • Haoliang Xu
  • Lihua Yang
  • Tengfei Xu
  • Yao Wu

Abstract

In view of the advantages of lightweight, high strength, easy cooling, and easy assembly, the rod-fastened rotor is widely used in the aeroengine and heavy gas turbine. However, because of assembly, stress relaxation, material creep, and other reasons, the clamping force of the tie rods will be out of tune during the long-term operation of the rotor. The detuning of the clamping force of the tie rods not only affects the contact stiffness of the contact interface but also causes the rod-fastened rotor with a certain residual shaft bow, which will affect the dynamic characteristics of the rod-fastened rotor. Based on the statistical model of rough surface contact (GW contact model), this paper presents a method to calculate the equivalent flexural stiffness of rough surface considering the detuning of the clamping force of the tie rods and gives the calculation method of the residual shaft bow deformation of the rod-fastened Jeffcott rotor with detuning of the tie rods. The effect of the preload, the rate of detuning of the tie rods, the number of detuning tie rods on the natural frequency, and the response of residual shaft bow of the rod-fastened Jeffcott rotor at a certain speed are investigated. The results show that the detuning of the tie rods makes the flexural stiffness of the rotor inconsistent along with two main stiffness directions of the rotor, which makes the natural frequency of the rotor divided into two. The negative detuning of the tie rods decreases the natural frequency of the rotor, while the positive detuning of the tie rods increases the natural frequency of the rotor. The smaller preload or the larger rate of detuning of the tie rods makes the detuning of the tie rods have a greater influence on the natural frequency of the rotor. These results will provide a theoretical reference for the dynamic analysis and design of the rod-fastened rotor.

Suggested Citation

  • Haoliang Xu & Lihua Yang & Tengfei Xu & Yao Wu, 2021. "Effect of Detuning of Clamping Force of Tie Rods on Dynamic Performance of Rod-Fastened Jeffcott Rotor," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-11, January.
  • Handle: RePEc:hin:jnlmpe:6645978
    DOI: 10.1155/2021/6645978
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6645978.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6645978.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6645978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6645978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.