Author
Listed:
- Zhenhua Zhang
- Yanbin Wang
- Pan Wang
Abstract
Porosity is an important parameter for the oil and gas storage, which reflects the geological characteristics of different historical periods. The logging parameters obtained from deep to shallow strata show the stratigraphic sedimentary characteristics in different geological periods, so there is a strong nonlinear mapping relationship between porosity and logging parameters. It is very important to make full use of logging parameters to predict the shale content and porosity of the reservoir for precise reservoir description. Deep neural network technology has strong data structure mining ability and has been applied to shale content prediction in recent years. In fact, the gated recurrent unit (GRU) neural network has further advantage in processing serialized data. Therefore, this study proposes a method to predict porosity by combining multiple logging parameters based on the GRU neural network. Firstly, the correlation measurement method based on Copula function is used to select the logging parameters most relevant to porosity parameters. Then, the GRU neural network is used to identify the nonlinear mapping relationship between logging data and porosity parameters. The application results in an exploration area of the Ordos basin show that this method is superior to multiple regression analysis and recurrent neural network method, which indicates that the GRU neural network is more effective in predicting a series of reservoir parameters such as porosity.
Suggested Citation
Zhenhua Zhang & Yanbin Wang & Pan Wang, 2021.
"On a Deep Learning Method of Estimating Reservoir Porosity,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, February.
Handle:
RePEc:hin:jnlmpe:6641678
DOI: 10.1155/2021/6641678
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6641678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.