IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6639671.html
   My bibliography  Save this article

A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems

Author

Listed:
  • Yanhui Che
  • Dengxu He

Abstract

Seagull optimization algorithm (SOA) inspired by the migration and attack behavior of seagulls in nature is used to solve the global optimization problem. However, like other well-known metaheuristic algorithms, SOA has low computational accuracy and premature convergence. Therefore, in the current work, these problems are solved by proposing the modified version of SOA. This paper proposes a novel hybrid algorithm, called whale optimization with seagull algorithm (WSOA), for solving global optimization problems. The main reason is that the spiral attack prey of seagulls is very similar to the predation behavior of whale bubble net, and the WOA has strong global search ability. Therefore, firstly, this paper combines WOA’s contraction surrounding mechanism with SOA’s spiral attack behavior to improve the calculation accuracy of SOA. Secondly, the levy flight strategy is introduced into the search formula of SOA, which can effectively avoid premature convergence of algorithms and balance exploration and exploitation among algorithms more effectively. In order to evaluate the effectiveness of solving global optimization problems, 25 benchmark test functions are tested, and WSOA is compared with seven famous metaheuristic algorithms. Statistical analysis and results comparison show that WSOA has obvious advantages compared with other algorithms. Finally, four engineering examples are tested with the proposed algorithm, and the effectiveness and feasibility of WSOA are verified.

Suggested Citation

  • Yanhui Che & Dengxu He, 2021. "A Hybrid Whale Optimization with Seagull Algorithm for Global Optimization Problems," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-31, January.
  • Handle: RePEc:hin:jnlmpe:6639671
    DOI: 10.1155/2021/6639671
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6639671.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6639671.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6639671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long, Wen & Jiao, Jianjun & Liang, Ximing & Xu, Ming & Tang, Mingzhu & Cai, Shaohong, 2022. "Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm," Energy, Elsevier, vol. 249(C).
    2. Elena Niculina Dragoi & Vlad Dafinescu, 2021. "Review of Metaheuristics Inspired from the Animal Kingdom," Mathematics, MDPI, vol. 9(18), pages 1-52, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6639671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.