IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6637183.html
   My bibliography  Save this article

Forecast of Short-Term Electricity Price Based on Data Analysis

Author

Listed:
  • Shuang Wu
  • Li He
  • Zhaolong Zhang
  • Yu Du

Abstract

The decision-making of power generation enterprises, power supply enterprises, and power consumers can be affected by forecasting the price of electricity. There are many irrelevant samples and features in big data, which often lead to low forecasting accuracy and high time-cost. Therefore, this paper proposes a forecasting framework based on big data processing, which selects a small quantity of data to achieve accurate forecasting while reducing the time-cost. First, the sample selection based on grey correlation analysis (GCA) is established to eliminate useless samples from the periodicity. Second, the feature selection based on GCA is established considering the feature classification and the temporal correlation features to further eliminate useless features. Third, principal component analysis is applied to reduce the noise among the data. Then, combined with a differential evolution algorithm (DE), a support-vector machine (SVM) is applied to forecast the price. Finally, the proposed framework is applied to the New England electricity market to forecast the short-term electricity price. The results show that, compared with DE-SVM without data processing, the forecasting accuracy is improved from 81.68% to 91.44%, and the time-cost is decreased from 35,074 s to 1,809 s which shows that the proposed method and model can provide a valuable tool for data processing and forecasting.

Suggested Citation

  • Shuang Wu & Li He & Zhaolong Zhang & Yu Du, 2021. "Forecast of Short-Term Electricity Price Based on Data Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, February.
  • Handle: RePEc:hin:jnlmpe:6637183
    DOI: 10.1155/2021/6637183
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6637183.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6637183.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6637183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Dong & Xihao Dou & Aruhan Bao & Yaoyu Zhang & Dongran Liu, 2022. "Day-Ahead Spot Market Price Forecast Based on a Hybrid Extreme Learning Machine Technique: A Case Study in China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    2. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6637183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.