IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6631274.html
   My bibliography  Save this article

Mixed-Integer Linear Programming Model by Linear Approximation for a Strike Package-to-Target Assignment Problem

Author

Listed:
  • Heungseob Kim

Abstract

This study deals with an aircraft-to-target assignment (ATA) problem considering the modern air operation environment, such as the strike package concept, multiple targets for a sortie, and the strike packages’ survivability. For the ATA problem, this study introduces a novel mathematical model in which a heterogeneous vehicle routing problem (HVRP) and a weapon-to-target assignment (WTA) problem are conceptually integrated. The HVRP generates the flight routes for strike packages because this study confirms that the survivability of a strike package depends on the path, and the WTA problem evaluates the likelihood of successful target destruction of assigned weapons. Although the first version of the model is developed as a mixed-integer nonlinear programming (MINLP) model, this study attempts to convert it to a mixed-integer linear programming (MILP) model using the logarithmic transformation and piecewise linear approximation methods. For an ATA problem, this activity could provide an opportunity to use the excellent existing algorithms for searching the optimal solution of LP models. To maximize the operational effectiveness, the MILP model simultaneously determines the following for each strike package: (a) composition type, (b) targets, (c) flight route, (d) types, and (e) quantity of weapons for each target.

Suggested Citation

  • Heungseob Kim, 2021. "Mixed-Integer Linear Programming Model by Linear Approximation for a Strike Package-to-Target Assignment Problem," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, April.
  • Handle: RePEc:hin:jnlmpe:6631274
    DOI: 10.1155/2021/6631274
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6631274.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6631274.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6631274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6631274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.