IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6628009.html
   My bibliography  Save this article

A Simplified Finite Difference Method (SFDM) Solution via Tridiagonal Matrix Algorithm for MHD Radiating Nanofluid Flow over a Slippery Sheet Submerged in a Permeable Medium

Author

Listed:
  • M. Asif Farooq
  • A. Salahuddin
  • Asif Mushtaq
  • M. Razzaq

Abstract

In this paper, we turn our attention to the mathematical model to simulate steady, hydromagnetic, and radiating nanofluid flow past an exponentially stretching sheet. A numerical modeling technique, simplified finite difference method (SFDM), has been applied to the flow model that is based on partial differential equations (PDEs) which is converted to nonlinear ordinary differential equations (ODEs) by using similarity variables. For the resultant algebraic system, the SFDM uses the tridiagonal matrix algorithm (TDMA) in computing the solution. The effectiveness of numerical scheme is verified by comparing it with solution from the literature. However, where reference solution is not available, one can compare its numerical results with the results of MATLAB built-in package bvp4c . The velocity, temperature, and concentration profiles are graphed for a variety of parameters, i.e., Prandtl number, Grashof number, thermal radiation parameter, Darcy number, Eckert number, Lewis number, and Brownian and thermophoresis parameters. The significant effects of the associated emerging thermophysical parameters, i.e., skin friction coefficient, local Nusselt number, and local Sherwood numbers are analyzed and discussed in detail. Numerical results are compared from the available literature and found a close agreement with each other. It is found that the Eckert number upsurges the velocity curve. However, the dimensionless temperature declines with the Grashof number. It is also shown that the SFDM gives good results when compared with the results obtained from bvp4c and results from the literature.

Suggested Citation

  • M. Asif Farooq & A. Salahuddin & Asif Mushtaq & M. Razzaq, 2021. "A Simplified Finite Difference Method (SFDM) Solution via Tridiagonal Matrix Algorithm for MHD Radiating Nanofluid Flow over a Slippery Sheet Submerged in a Permeable Medium," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-17, January.
  • Handle: RePEc:hin:jnlmpe:6628009
    DOI: 10.1155/2021/6628009
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6628009.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6628009.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6628009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6628009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.