IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6627114.html
   My bibliography  Save this article

Knowledge Graph Question and Answer System for Mechanical Intelligent Manufacturing Based on Deep Learning

Author

Listed:
  • Miaoyuan Shi

Abstract

With the development of deep learning and its wide application in the field of natural language, the question and answer research of knowledge graph based on deep learning has gradually become the focus of attention. After that, the natural language query is converted into a structured query sentence to identify the entities and attributes in the user’s natural language query and the specified entities and attributes are used to retrieve answers to the knowledge graph. Using the advantage of deep learning in capturing sentence information, it incorporates the attention mechanism to obtain the semantic vector of the relevant attributes in the query and uses the parameter sharing mechanism to insert candidate attributes into the triple in the same model to obtain the semantic vector of typical candidates. The experiment measured that under the 100,000 RDF dataset, the single entity query of the MIQE model does not exceed 3 seconds, and the connection query does not exceed 5 seconds. Under the one-million RDF dataset, the single entity query of the MIQE model does not exceed 8 seconds, and the connection query will not be more than 10 seconds. Experimental data show that the system of knowledge-answering questions of engineering of intelligent construction based on deep learning has good horizontal scalability.

Suggested Citation

  • Miaoyuan Shi, 2021. "Knowledge Graph Question and Answer System for Mechanical Intelligent Manufacturing Based on Deep Learning," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-8, February.
  • Handle: RePEc:hin:jnlmpe:6627114
    DOI: 10.1155/2021/6627114
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6627114.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6627114.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6627114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Lin & Jie Liu & Feng Guo & Changsheng Tong & Lizheng Zu & Hao Guo, 2022. "ERDERP: Entity and Relation Double Embedding on Relation Hyperplanes and Relation Projection Hyperplanes," Mathematics, MDPI, vol. 10(22), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6627114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.