IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6625695.html
   My bibliography  Save this article

A Novel Detection Framework for Detecting Abnormal Human Behavior

Author

Listed:
  • Chengfei Wu
  • Zixuan Cheng

Abstract

Public safety issues have always been the focus of widespread concern of people from all walks of life. With the development of video detection technology, the detection of abnormal human behavior in videos has become the key to preventing public safety issues. Particularly, in student groups, the detection of abnormal human behavior is very important. Most existing abnormal human behavior detection algorithms are aimed at outdoor activity detection, and the indoor detection effects of these algorithms are not ideal. Students spend most of their time indoors, and modern classrooms are mostly equipped with monitoring equipment. This study focuses on the detection of abnormal behaviors of indoor humans and uses a new abnormal behavior detection framework to realize the detection of abnormal behaviors of indoor personnel. First, a background modeling method based on a Gaussian mixture model is used to segment the background image of each image frame in the video. Second, block processing is performed on the image after segmenting the background to obtain the space-time block of each frame of the image, and this block is used as the basic representation of the detection object. Third, the foreground image features of each space-time block are extracted. Fourth, fuzzy C-means clustering (FCM) is used to detect outliers in the data sample. The contribution of this paper is (1) the use of an abnormal human behavior detection framework that is effective indoors. Compared with the existing abnormal human behavior detection methods, the detection framework in this paper has a little difference in terms of its outdoor detection effects. (2) Compared with other detection methods, the detection framework used in this paper has a better detection effect for abnormal human behavior indoors, and the detection performance is greatly improved. (3) The detection framework used in this paper is easy to implement and has low time complexity. Through the experimental results obtained on public and manually created data sets, it can be demonstrated that the performance of the detection framework used in this paper is similar to those of the compared methods in outdoor detection scenarios. It has a strong advantage in terms of indoor detection. In summary, the proposed detection framework has a good practical application value.

Suggested Citation

  • Chengfei Wu & Zixuan Cheng, 2020. "A Novel Detection Framework for Detecting Abnormal Human Behavior," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-9, November.
  • Handle: RePEc:hin:jnlmpe:6625695
    DOI: 10.1155/2020/6625695
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6625695.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6625695.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6625695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6625695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.