IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6625435.html
   My bibliography  Save this article

Forecast and Early Warning of Regional Bus Passenger Flow Based on Machine Learning

Author

Listed:
  • Wusheng Liu
  • Qian Tan
  • Wei Wu

Abstract

This paper mainly forecasts the short-term passenger flow of regional bus stations based on the integrated circuit (IC) card data of bus stations and puts forward an early warning model for regional bus passenger flow. Firstly, the bus stations were aggregated into virtual regional bus stations. Then, the short-term passenger flow of regional bus stations was predicted by the machine learning (ML) method of support vector machine (SVM). On this basis, the early warning model for regional bus passenger flow was developed through the capacity analysis of regional bus stations. The results show that the prediction accuracy of short-term passenger flow could be improved by replacing actual bus stations with virtual regional bus stations because the passenger flow of regional bus stations is more stable than that of a single bus station. The accurate prediction and early warning of regional bus passenger flow enable urban bus dispatchers to maintain effective control of urban public transport, especially during special and large-scale activities.

Suggested Citation

  • Wusheng Liu & Qian Tan & Wei Wu, 2020. "Forecast and Early Warning of Regional Bus Passenger Flow Based on Machine Learning," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, December.
  • Handle: RePEc:hin:jnlmpe:6625435
    DOI: 10.1155/2020/6625435
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6625435.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6625435.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6625435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leticia Monje & Ramón A. Carrasco & Carlos Rosado & Manuel Sánchez-Montañés, 2022. "Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain," Mathematics, MDPI, vol. 10(9), pages 1-20, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6625435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.