IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6618395.html
   My bibliography  Save this article

Buoyancy Effect on a Micropolar Fluid Flow Past a Vertical Riga Surface Comprising Water-Based SWCNT–MWCNT Hybrid Nanofluid Subject to Partially Slipped and Thermal Stratification: Cattaneo–Christov Model

Author

Listed:
  • Ahmed Mohammed Alshehri
  • Hasan Huseyin Coban
  • Shafiq Ahmad
  • Umair Khan
  • Wajdi Mohamad Alghamdi

Abstract

This paper provides a comprehensive analysis of the mixed convective flow that comprises SWCNT-MWCNT/water hybrid nanofluid containing micropolar fluid through a partially slipped vertical Riga surface. A Cattaneo–Christov heat flux model is used to examine the heat transport rate. The energy equation is gaining more significance with the effect of viscous dissipation and thermal stratification. The flow model is transformed by convenient transformation into nondimensionless form. The numerical results of nonlinear complex equations are collected using the bvp4c built-in function from MATLAB which is based on the finite difference method. The graphical results are obtained for both hybrid nanofluid and simple nanofluid. The temperature distribution for hybrid nanofluid is higher than that for simple nanofluid when the solid volume fraction increases. The axial friction factor increases with solid volume fraction, porosity parameter, and mixed convection parameter. The velocity graph varies inversely with nanofluid volume fraction and micropolar parameter.

Suggested Citation

  • Ahmed Mohammed Alshehri & Hasan Huseyin Coban & Shafiq Ahmad & Umair Khan & Wajdi Mohamad Alghamdi, 2021. "Buoyancy Effect on a Micropolar Fluid Flow Past a Vertical Riga Surface Comprising Water-Based SWCNT–MWCNT Hybrid Nanofluid Subject to Partially Slipped and Thermal Stratification: Cattaneo–Christov M," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, June.
  • Handle: RePEc:hin:jnlmpe:6618395
    DOI: 10.1155/2021/6618395
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6618395.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6618395.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6618395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rusya Iryanti Yahaya & Norihan Md Arifin & Ioan Pop & Fadzilah Md Ali & Siti Suzilliana Putri Mohamed Isa, 2023. "Dual Solutions of Unsteady Mixed Convection Hybrid Nanofluid Flow Past a Vertical Riga Plate with Radiation Effect," Mathematics, MDPI, vol. 11(1), pages 1-20, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6618395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.