Author
Listed:
- Filipe Ribeiro
- Pedro Albuquerque
- Pedro Gamboa
- Kouamana Bousson
Abstract
Given an array (or matrix) of values for a function of one or more variables, it is often desired to find a value between two given points. Multivariable interpolation and approximation by radial basis functions are important subjects in approximation theory that have many applications in Science and Engineering fields. During the last decades, radial basis functions (RBFs) have found increasingly widespread use for functional approximation of scattered data. This research work aims at benchmarking two different approaches: an approximation by radial basis functions and a piecewise linear multivariable interpolation in terms of their effectiveness and efficiency in order to conclude about the advantages and disadvantages of each approach in approximating the aerodynamic coefficients of airfoils. The main focus of this article is to study the main factors that affect the accuracy of the multiquadric functions, including the location and quantity of centers and the choice of the form factor. It also benchmarks them against piecewise linear multivariable interpolation regarding their precision throughout the selected domain and the computational cost required to accomplish a given amount of solutions associated with the aerodynamic coefficients of lift, drag and pitching moment. The approximation functions are applied to two different multidimensional cases: two independent variables, where the aerodynamic coefficients depend on the Reynolds number (Re) and the angle-of-attack ( α ), and four independent variables, where the aerodynamic coefficients depend on Re, α , flap chord ratio ( c flap ), and flap deflection ( δ flap ).
Suggested Citation
Filipe Ribeiro & Pedro Albuquerque & Pedro Gamboa & Kouamana Bousson, 2021.
"Use of Multiquadric Functions for Multivariable Representation of the Aerodynamic Coefficients of Airfoils,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-21, April.
Handle:
RePEc:hin:jnlmpe:6615601
DOI: 10.1155/2021/6615601
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6615601. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.