IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6615148.html
   My bibliography  Save this article

Effects of Supply Parameters of Stratum Ventilation on Energy Utilization Efficiency and Indoor Thermal Comfort: A Computational Approach

Author

Listed:
  • Lina Zhang
  • Yanhui Mao
  • Qiu Tu
  • Xiaogang Wu
  • Lingyu Tan

Abstract

Stratum ventilation shows the significant potential on energy conservation and indoor thermal comfort under cooling applications. Yet, only limited researches focus on the thermal performance of stratum ventilation under heating condition. The heating and cooling operation characteristic of stratum ventilation is different due to the distinct airflow characteristics. Therefore, this paper investigated the parameters that affect energy utilization efficiency and indoor thermal comfort under heating condition served by stratum ventilation via CFD simulations approach. The supply air parameters included temperature, airflow rate, angle, and return air outlet positions. The evaluation indicators adopt ventilation effectiveness and effective draft temperature (EDT) for assessing the energy utilization efficiency and indoor thermal comfort served by stratum ventilation under heating condition. The results demonstrated that, under the heating mode of stratum ventilation, different effects on the thermal performance were made by the mentioned parameters. The ventilation effectiveness was higher when the air supply temperature is 26°C, airflow rate is 7 air change per hour (ACH), and the air supply angle is 45°. The EDT range of the occupied zone is closest to zero K when the air supply temperature is 28°C, airflow rate is 12 (ACH), and the air supply angle is 60°. The related conclusions obtained from this study provide the theoretical basis for the stratum ventilation design and promote its heating application.

Suggested Citation

  • Lina Zhang & Yanhui Mao & Qiu Tu & Xiaogang Wu & Lingyu Tan, 2021. "Effects of Supply Parameters of Stratum Ventilation on Energy Utilization Efficiency and Indoor Thermal Comfort: A Computational Approach," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, April.
  • Handle: RePEc:hin:jnlmpe:6615148
    DOI: 10.1155/2021/6615148
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6615148.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6615148.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6615148?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhui Mao & Shengxu Wang & Jianzhou Liang & Saiqin Mao & Yukun Han & Shengquan Zhang, 2022. "Stratum Ventilation: Enabling Simultaneous Energy Conservation and Air Purification in Subway Cars," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    2. Yan Bai & Zhuo Wei, 2023. "A Combinatorial Optimization Strategy for Performance Improvement of Stratum Ventilation Considering Outdoor Weather Changes and Metabolic Rate Differences: Energy Consumption and Sensitivity Analysis," Sustainability, MDPI, vol. 15(3), pages 1-22, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6615148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.