IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6613671.html
   My bibliography  Save this article

Edge-Based Convolutional Neural Network for Improving Breast Cancer Prediction Performance

Author

Listed:
  • Madhu
  • Raman Kumar

Abstract

There are many research studies in the field of breast cancer prediction, but it has been observed that the time taken for prediction needs to be reduced. The problem in the existing research is space consumption by graphical content. The proposed research is supposed to minimize the prediction time and space consumption. In this paper, research has focused on the study of existing breast cancer research and techniques and eliminating their limitation. It has been observed that when the number of datasets increases, every comparison makes a huge gap in size and comparison time. This research proposes a methodology for breast cancer prediction using an edge-based CNN (convolutional neural network) algorithm. The elimination of useless content from the graphical image before applying CNN has reduced the time consumption along with space consumption. The edge detection mechanism would retail only edges from the image sample in order to detect the pattern to predict breast cancer. The proposed work is supposed to implement the proposed methodology. A comparison of the proposed methodology and algorithm with the existing algorithm is made during simulation. The proposed work is found to be more efficient compared to the existing techniques used in breast cancer prediction. The utilization of proposed in the work area of medical science is supposed to enhance the capability in case of CNN at the time of decision-making. The proposed work is supposed to be more accurate compared to the existing works. It has been observed that the proposed work is fourteen to fifteen percent more accurate. It is taking 9/4 times less space and 1.0849004/0.178971 times less time compared to the general CNN model. Accuracy might vary as per size of the image and alteration performed in dataset of the image.

Suggested Citation

  • Madhu & Raman Kumar, 2021. "Edge-Based Convolutional Neural Network for Improving Breast Cancer Prediction Performance," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, July.
  • Handle: RePEc:hin:jnlmpe:6613671
    DOI: 10.1155/2021/6613671
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6613671.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6613671.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6613671?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6613671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.