IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6595329.html
   My bibliography  Save this article

Kernel-Based Aggregating Learning System for Online Portfolio Optimization

Author

Listed:
  • Xin Wang
  • Tao Sun
  • Zhi Liu

Abstract

Recently, various machine learning techniques have been applied to solve online portfolio optimization (OLPO) problems. These approaches typically explore aggressive strategies to gain excess returns due to the existence of irrational phenomena in financial markets. However, existing aggressive OLPO strategies rarely consider the downside risk and lack effective trend representation, which leads to poor prediction performance and large investment losses in certain market environments. Besides, prediction with a single model is often unstable and sensitive to the noises and outliers, and the subsequent selection of optimal parameters also become obstacles to accurate estimation. To overcome these drawbacks, this paper proposes a novel kernel-based aggregating learning (KAL) system for OLPO. It includes a two-step price prediction scheme to improve the accuracy and robustness of the estimation. Specifically, a component price estimator is built by exploiting additional indicator information and the nonstationary nature of financial time series, and then an aggregating learning method is presented to combine multiple component estimators following different principles. Next, this paper conducts an enhanced tracking system by introducing a kernel-based increasing factor to maximize the future wealth of next period. At last, an online learning algorithm is designed to solve the system objective, which is suitable for large-scale and time-limited situations. Experimental results on several benchmark datasets from diverse real markets show that KAL outperforms other state-of-the-art systems in cumulative wealth and some risk-adjusted metrics. Meanwhile, it can withstand certain transaction costs.

Suggested Citation

  • Xin Wang & Tao Sun & Zhi Liu, 2020. "Kernel-Based Aggregating Learning System for Online Portfolio Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, January.
  • Handle: RePEc:hin:jnlmpe:6595329
    DOI: 10.1155/2020/6595329
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6595329.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2020/6595329.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/6595329?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6595329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.