IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6561730.html
   My bibliography  Save this article

Design and Implementation of Embedded Real-Time English Speech Recognition System Based on Big Data Analysis

Author

Listed:
  • Lifang He
  • Gaimin Jin
  • Sang-Bing Tsai

Abstract

This article uses Field Programmable Gate Array (FPGA) as a carrier and uses IP core to form a System on Programmable Chip (SOPC) English speech recognition system. The SOPC system uses a modular hardware system design method. Except for the independent development of the hardware acceleration module and its control module, the other modules are implemented by software or IP provided by Xilinx development tools. Hardware acceleration IP adopts a top-down design method, provides parallel operation of multiple operation components, and uses pipeline technology, which speeds up data operation, so that only one operation cycle is required to obtain an operation result. In terms of recognition algorithm, a more effective training algorithm is proposed, Genetic Continuous Hidden Markov Model (GA_CHMM), which uses genetic algorithm to directly train CHMM model. It is to find the optimal model by encoding the parameter values of the CHMM and performing operations such as selection, crossover, and mutation according to the fitness function. The optimal parameter value after decoding corresponds to the CHMM model, and then the English speech recognition is performed through the CHMM algorithm. This algorithm can save a lot of training time, thereby improving the recognition rate and speed. This paper studies the optimization of embedded system software. By studying the fixed-point software algorithm and the optimization of system storage space, the real-time response speed of the system has been reduced from about 10 seconds to an average of 220 milliseconds. Through the optimization of the CHMM algorithm, the real-time performance of the system is improved again, and the average time to complete the recognition is significantly shortened. At the same time, the system can achieve a recognition rate of over 90% when the English speech vocabulary is less than 200.

Suggested Citation

  • Lifang He & Gaimin Jin & Sang-Bing Tsai, 2021. "Design and Implementation of Embedded Real-Time English Speech Recognition System Based on Big Data Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, September.
  • Handle: RePEc:hin:jnlmpe:6561730
    DOI: 10.1155/2021/6561730
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6561730.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/6561730.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/6561730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6561730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.