IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6543109.html
   My bibliography  Save this article

Pump Selection and Performance Prediction for the Technical Innovation of an Axial-Flow Pump Station

Author

Listed:
  • Honggeng Zhu
  • Ge Bo
  • Yuanbing Zhou
  • Rentian Zhang
  • Jilin Cheng

Abstract

Axial-flow pumps are widely used in every sector of China. After many years of operation, the aging of mechanical and electrical facilities poses threats to their steady and safe operation. Taking the technical innovation of an axial-flow pump station as an example, the study is focused on the pump selection and performance prediction. The pump similarity law and specific speed were applied to guide the pump selection based on the designed head and discharge. The performances of pump models were compared and it is suggested for the technical innovation that when the selected model pump is adopted, the impeller diameter is kept at 3100 mm and the rotational speed is reduced from 150r/min to 136.4r/min to improve its cavitation performance. A three-dimensional pumping system model was established by using software Pro/E and CFD analyses were conducted to predict the hydraulic performance of the pumping system for the evaluation of technical innovation. It is shown through the comparison of computed results with model test results that the designed flow rate corresponding to the designed head can be fully satisfied with the selected pump and stronger pumping capacity can be prospected at the designed and mean lifting head. The pumping system model tests, in comparison between the original and the selected model pump, indicate that when the innovated pump station operates under characteristic heads, the pumping system efficiency can be raised by more than 3 percentages, and the cavitation allowance can be decreased by 0.90m; thus, better engineering and economic benefits can be prospected through the technical innovation.

Suggested Citation

  • Honggeng Zhu & Ge Bo & Yuanbing Zhou & Rentian Zhang & Jilin Cheng, 2018. "Pump Selection and Performance Prediction for the Technical Innovation of an Axial-Flow Pump Station," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-9, August.
  • Handle: RePEc:hin:jnlmpe:6543109
    DOI: 10.1155/2018/6543109
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2018/6543109.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2018/6543109.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/6543109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yurui Dai & Weidong Shi & Yongfei Yang & Zhanshan Xie & Qinghong Zhang, 2023. "Numerical Analysis of Unsteady Internal Flow Characteristics in a Bidirectional Axial Flow Pump," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
    2. Pei, Yingju & Liu, Qingyou & Wang, Chuan & Wang, Guorong, 2021. "Energy efficiency prediction model and energy characteristics of subsea disc pump based on velocity slip and similarity theory," Energy, Elsevier, vol. 229(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6543109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.