Author
Listed:
- Yimin Lin
- Naiguang Lu
- Xiaoping Lou
- Fang Zou
- Yanbin Yao
- Zhaocai Du
Abstract
Dense stereo correspondence enabling reconstruction of depth information in a scene is of great importance in the field of computer vision. Recently, some local solutions based on matching cost filtering with an edge-preserving filter have been proved to be capable of achieving more accuracy than global approaches. Unfortunately, the computational complexity of these algorithms is quadratically related to the window size used to aggregate the matching costs. The recent trend has been to pursue higher accuracy with greater efficiency in execution. Therefore, this paper proposes a new cost-aggregation module to compute the matching responses for all the image pixels at a set of sampling points generated by a hierarchical clustering algorithm. The complexity of this implementation is linear both in the number of image pixels and the number of clusters. Experimental results demonstrate that the proposed algorithm outperforms state-of-the-art local methods in terms of both accuracy and speed. Moreover, performance tests indicate that parameters such as the height of the hierarchical binary tree and the spatial and range standard deviations have a significant influence on time consumption and the accuracy of disparity maps.
Suggested Citation
Yimin Lin & Naiguang Lu & Xiaoping Lou & Fang Zou & Yanbin Yao & Zhaocai Du, 2013.
"Matching Cost Filtering for Dense Stereo Correspondence,"
Mathematical Problems in Engineering, Hindawi, vol. 2013, pages 1-11, September.
Handle:
RePEc:hin:jnlmpe:654139
DOI: 10.1155/2013/654139
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:654139. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.