Author
Listed:
- Zhan Huan
- Xuejie Chen
- Shiyun Lv
- Hongyang Geng
Abstract
Gait, as a kind of biological feature, has a profound value in personnel identification. This paper analyzes gait characteristics based on acceleration sensors of smart phones and proposes a new gait recognition method. First, in view of the existing methods in the process of extraction of gait features, a large number of redundant calculations, cycle detection error, and the phase deviation issue during the week put forward the Shape Context (SC) and Linear Time Normalized (LTN) combining SCLTN calibration method of gait cycle sequence matching, to represent the whole extract typical gait cycle gait. In view of the existing extracted gait features are still some conventional features; the velocity change of relatively uniform acceleration and the change of acceleration per unit time are proposed as new features. Secondly, combining new features with traditional features to form a new feature is set for training alternative feature set, from which the training time and recognition effect of multiple classifiers are screened. Finally, a new multiclassifier fusion method, Multiple Scale Voting (MSV), is proposed to fuse the results of Multiple classifiers to obtain the final classification results. In order to verify the performance of the proposed method, gait data of 32 testers are collected. The final experimental results show that the new feature has good separability, and the recognition rate of fusion feature set after MSV algorithm is 98.42%.
Suggested Citation
Zhan Huan & Xuejie Chen & Shiyun Lv & Hongyang Geng, 2019.
"Gait Recognition of Acceleration Sensor for Smart Phone Based on Multiple Classifier Fusion,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-17, June.
Handle:
RePEc:hin:jnlmpe:6471532
DOI: 10.1155/2019/6471532
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6471532. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.