Author
Listed:
- Ziwei Cui
- Cheng Wang
- Yueer Gao
- Dingkang Yang
- Wei Wei
- Jianwei Chen
- Ting He
Abstract
Smart card data of conventional bus passengers are important basic data for many studies such as bus network optimization. As only boarding information is recorded in most cities, alighting stops need to be identified. The classical trip chain method can only detect destinations of passengers who have trip cycles. However, the rest of unlinked trips without destinations are hard to analyze. To improve the accuracy of existing methods for determining alighting stops of unlinked trips, a two-layer stacking-framework-based method is proposed in this work. In the first layer, five methods are used, i.e., high-frequency stop method, stop attraction method, transfer convenience method, land-use type attraction method, and improved group historical set method (I-GHSM). Among them, the last one is presented here to cluster records with similar behavior patterns into a group more accurately. In the second layer, the logistic regression model is selected to get the appropriate weight of each method in the former layer for different datasets, which brings the generalization ability. Taking data from Xiamen BRT Line Kuai 1 as an example, I-GHSM given in the first layer has proved to be necessary and effective. Besides, the two-layer stacking-framework-based method can detect all destinations of unlinked trips with an accuracy of 51.88%, and this accuracy is higher than that of comparison methods, i.e., the two-step algorithms with KNN (k-nearest neighbor), Decision Tree or Random Forest, and a step-by-step method. Results indicate that the framework-based method presented has high accuracy in identifying all alighting stops of unlinked trips.
Suggested Citation
Ziwei Cui & Cheng Wang & Yueer Gao & Dingkang Yang & Wei Wei & Jianwei Chen & Ting He, 2021.
"Alighting Stop Determination of Unlinked Trips Based on a Two-Layer Stacking Framework,"
Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-15, March.
Handle:
RePEc:hin:jnlmpe:6464980
DOI: 10.1155/2021/6464980
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6464980. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.