IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6431942.html
   My bibliography  Save this article

Research on Strawberry Disease Diagnosis Based on Improved Residual Network Recognition Model

Author

Listed:
  • Xu Wenchao
  • Yan Zhi
  • Hao Gao

Abstract

Considering the problems of high cost, inefficiency, and time consumption of manual diagnosis of strawberry diseases, G-ResNet50 is proposed based on transfer learning and deep residual network for strawberry disease identification and classification. The G-ResNet50 is based on the ResNet50, and the focal loss function is introduced in G-ResNet50 to make the model devote itself to disease images that are difficult to classify. During the training process of the G-ResNet50 model, its convolutional layer and pooling layer inherit the pre-trained weight parameters from the ResNet50 model on the PlantVillage dataset, while adding dropout regularization and batch regularization methods to optimize the network model. The strawberry disease dataset includes four sample images of healthy plants, powdery mildew, strawberry anthracnose, and leaf spot disease. The dataset is enhanced and expanded by operations including angle rotation, adjusting contrast and brightness, and adding Gaussian noise. Compared with existing models such as VGG16, ResNet50, InceptionV3, and MobileNetV2, the results of model training and testing on 7,525 four-category leaf datasets show that the G-ResNet50 model has faster convergence speed and better classification effect, and its average recognition accuracy rate reached 98.67%, which is significantly higher than other models. Through the three evaluation indicators of precision rate, recall rate, and confusion matrix, it is concluded that the G-ResNet50 has good robustness, high stability, and high recognition accuracy and can provide a feasible solution for strawberry disease detection in practical applications.

Suggested Citation

  • Xu Wenchao & Yan Zhi & Hao Gao, 2022. "Research on Strawberry Disease Diagnosis Based on Improved Residual Network Recognition Model," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-13, February.
  • Handle: RePEc:hin:jnlmpe:6431942
    DOI: 10.1155/2022/6431942
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6431942.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/mpe/2022/6431942.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2022/6431942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6431942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.