IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6403081.html
   My bibliography  Save this article

A Comparative Study of Activation Functions of NAR and NARX Neural Network for Long-Term Wind Speed Forecasting in Malaysia

Author

Listed:
  • Rasel Sarkar
  • Sabariah Julai
  • Sazzad Hossain
  • Wen Tong Chong
  • Mahmudur Rahman

Abstract

Since wind power is directly influenced by wind speed, long-term wind speed forecasting (WSF) plays an important role for wind farm installation. WSF is essential for controlling, energy management and scheduled wind power generation in wind farm. The proposed investigation in this paper provides 30-days-ahead WSF. Nonlinear Autoregressive (NAR) and Nonlinear Autoregressive Exogenous (NARX) Neural Network (NN) with different network settings have been used to facilitate the wind power generation. The essence of this study is that it compares the effect of activation functions (namely, tansig and logsig) in the performance of time series forecasting since activation function is the core element of any artificial neural network model. A set of wind speed data was collected from different meteorological stations in Malaysia, situated in Kuala Lumpur, Kuantan, and Melaka. The proposed activation functions tansig of NARNN and NARXNN resulted in promising outcomes in terms of very small error between actual and predicted wind speed as well as the comparison for the logsig transfer function results.

Suggested Citation

  • Rasel Sarkar & Sabariah Julai & Sazzad Hossain & Wen Tong Chong & Mahmudur Rahman, 2019. "A Comparative Study of Activation Functions of NAR and NARX Neural Network for Long-Term Wind Speed Forecasting in Malaysia," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-14, March.
  • Handle: RePEc:hin:jnlmpe:6403081
    DOI: 10.1155/2019/6403081
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2019/6403081.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2019/6403081.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/6403081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karodine Chreng & Han Soo Lee & Soklin Tuy, 2022. "A Hybrid Model for Electricity Demand Forecast Using Improved Ensemble Empirical Mode Decomposition and Recurrent Neural Networks with ERA5 Climate Variables," Energies, MDPI, vol. 15(19), pages 1-26, October.
    2. Dong, Yunxuan & Wang, Jing & Xiao, Ling & Fu, Tonglin, 2021. "Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target," Energy, Elsevier, vol. 215(PB).
    3. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Elshafei, Basem & Peña, Alfredo & Popov, Atanas & Giddings, Donald & Ren, Jie & Xu, Dong & Mao, Xuerui, 2023. "Offshore wind resource assessment based on scarce spatio-temporal measurements using matrix factorization," Renewable Energy, Elsevier, vol. 202(C), pages 1215-1225.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6403081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.