IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/639787.html
   My bibliography  Save this article

A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction

Author

Listed:
  • Mourad Ykhlef
  • Reem Alqifari

Abstract

Solving winner determination problem in multiunit double auction has become an important E-business task. The main issue in double auction is to improve the reward in order to match the ideal prices and quantity and make the best profit for sellers and buyers according to their bids and predefined quantities. There are many algorithms introduced for solving winner in multiunit double auction. Conventional algorithms can find the optimal solution but they take a long time, particularly when they are applied to large dataset. Nowadays, some evolutionary algorithms, such as particle swarm optimization and genetic algorithm, were proposed and have been applied. In order to improve the speed of evolutionary algorithms convergence, we will propose a new kind of hybrid evolutionary algorithm that combines genetic algorithm (GA) with particle swarm optimization (PSO) to solve winner determination problem in multiunit double auction; we will refer to this algorithm as AUC-GAPSO.

Suggested Citation

  • Mourad Ykhlef & Reem Alqifari, 2015. "A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, June.
  • Handle: RePEc:hin:jnlmpe:639787
    DOI: 10.1155/2015/639787
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/639787.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/639787.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/639787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernanda Nakano Kazama & Aluizio Fausto Ribeiro Araujo & Paulo Barros Correia & Elaine Guerrero-Peña, 2021. "Constraint-guided evolutionary algorithm for solving the winner determination problem," Journal of Heuristics, Springer, vol. 27(6), pages 1111-1150, December.
    2. Jing Yu & Lining Xing & Xu Tan, 2021. "The new treatment mode research of hepatitis B based on ant colony algorithm," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 740-759, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:639787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.