IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/6375314.html
   My bibliography  Save this article

Improvement of the Efficiency of the Axial-Flow Pump at Part Loads due to Installing Outlet Guide Vanes Mechanism

Author

Listed:
  • Fan Yang
  • Hao-ru Zhao
  • Chao Liu

Abstract

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.

Suggested Citation

  • Fan Yang & Hao-ru Zhao & Chao Liu, 2016. "Improvement of the Efficiency of the Axial-Flow Pump at Part Loads due to Installing Outlet Guide Vanes Mechanism," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-10, February.
  • Handle: RePEc:hin:jnlmpe:6375314
    DOI: 10.1155/2016/6375314
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2016/6375314.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2016/6375314.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/6375314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Li & Yiwei Song & Shengsheng Xia & Qiang Li, 2022. "Influence of Guide Vane Slope on Axial-Flow Hydraulic Performance and Internal Flow Characteristics," Energies, MDPI, vol. 15(17), pages 1-10, August.
    2. Kan, Kan & Yang, Zixuan & Lyu, Pin & Zheng, Yuan & Shen, Lian, 2021. "Numerical study of turbulent flow past a rotating axial-flow pump based on a level-set immersed boundary method," Renewable Energy, Elsevier, vol. 168(C), pages 960-971.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6375314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.