Author
Listed:
- Jesus Gonzalez-Trejo
- Cesar Augusto Real-Ramirez
- Ignacio Carvajal-Mariscal
- Florencio Sanchez-Silva
- Francisco Cervantes-De-La-Torre
- Raul Miranda-Tello
- Ruslan Gabbasov
Abstract
The quality of steel produced by continuous casting depends mainly on the characteristics of the liquid steel flow pattern within the mold. This pattern depends on the flow dynamics of the nozzle that is immersed in liquid steel. This work characterizes the fluid dynamics within two separate submerged entry nozzle models with a square cross section bore. The Froude similarity criterion and water as working fluid have been used. The models consist of a square-shaped tube with one inlet and two lateral squared exits at the bottom. To enhance the flow visualization, the models do not have exit ports. Moreover, one of the models has a “pool,” a volume at the bottom, and the other prescinds of it. The geometrical parameters and operational conditions of physical experiments were reproduced in the numerical simulations. The turbulence model used in this work is large eddy simulation (LES) with dynamic k -equation filtering. It was found that transient numerical simulations reproduce the dynamic nature of the internal flow pattern seen in physical experiments. The results show that the flow pattern within the pool nozzle is defined by only one large vortex; on the other hand, in the nozzle, without the pool, the flow pattern achieves a complex behavior characterized by two small vortexes. This study will allow to build nozzles that produce a symmetric, regular fluid flow pattern inside the mold, which leads to improvements on the process such as low energy consumption and finally in cost reductions.
Suggested Citation
Jesus Gonzalez-Trejo & Cesar Augusto Real-Ramirez & Ignacio Carvajal-Mariscal & Florencio Sanchez-Silva & Francisco Cervantes-De-La-Torre & Raul Miranda-Tello & Ruslan Gabbasov, 2020.
"Hydrodynamic Analysis of the Flow inside the Submerged Entry Nozzle,"
Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, October.
Handle:
RePEc:hin:jnlmpe:6267472
DOI: 10.1155/2020/6267472
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6267472. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.