IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/625289.html
   My bibliography  Save this article

Mean-Variance Hedging Based on an Incomplete Market with External Risk Factors of Non-Gaussian OU Processes

Author

Listed:
  • Wanyang Dai

Abstract

We prove the global risk optimality of the hedging strategy of contingent claim, which is explicitly (or called semiexplicitly) constructed for an incomplete financial market with external risk factors of non-Gaussian Ornstein-Uhlenbeck (NGOU) processes. Analytical and numerical examples are both presented to illustrate the effectiveness of our optimal strategy. Our study establishes the connection between our financial system and existing general semimartingale based discussions by justifying required conditions. More precisely, there are three steps involved. First, we firmly prove the no-arbitrage condition to be true for our financial market, which is used as an assumption in existing discussions. In doing so, we explicitly construct the square-integrable density process of the variance-optimal martingale measure (VOMM). Second, we derive a backward stochastic differential equation (BSDE) with jumps for the mean-value process of a given contingent claim. The unique existence of adapted strong solution to the BSDE is proved under suitable terminal conditions including both European call and put options as special cases. Third, by combining the solution of the BSDE and the VOMM, we reach the justification of the global risk optimality for our hedging strategy.

Suggested Citation

  • Wanyang Dai, 2015. "Mean-Variance Hedging Based on an Incomplete Market with External Risk Factors of Non-Gaussian OU Processes," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-20, April.
  • Handle: RePEc:hin:jnlmpe:625289
    DOI: 10.1155/2015/625289
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/625289.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/625289.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/625289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:625289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.