IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/623720.html
   My bibliography  Save this article

Non-Gaussian Hybrid Transfer Functions: Memorizing Mine Survivability Calculations

Author

Listed:
  • Mary Opokua Ansong
  • Jun Steed Huang
  • Mary Ann Yeboah
  • Han Dun
  • Hongxing Yao

Abstract

Hybrid algorithms and models have received significant interest in recent years and are increasingly used to solve real-world problems. Different from existing methods in radial basis transfer function construction, this study proposes a novel nonlinear-weight hybrid algorithm involving the non-Gaussian type radial basis transfer functions. The speed and simplicity of the non-Gaussian type with the accuracy and simplicity of radial basis function are used to produce fast and accurate on-the-fly model for survivability of emergency mine rescue operations, that is, the survivability under all conditions is precalculated and used to train the neural network. The proposed hybrid uses genetic algorithm as a learning method which performs parameter optimization within an integrated analytic framework, to improve network efficiency. Finally, the network parameters including mean iteration, standard variation, standard deviation, convergent time, and optimized error are evaluated using the mean squared error. The results demonstrate that the hybrid model is able to reduce the computation complexity, increase the robustness and optimize its parameters. This novel hybrid model shows outstanding performance and is competitive over other existing models.

Suggested Citation

  • Mary Opokua Ansong & Jun Steed Huang & Mary Ann Yeboah & Han Dun & Hongxing Yao, 2015. "Non-Gaussian Hybrid Transfer Functions: Memorizing Mine Survivability Calculations," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-18, March.
  • Handle: RePEc:hin:jnlmpe:623720
    DOI: 10.1155/2015/623720
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/623720.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/623720.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/623720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emelia Opoku Aboagye & Rajesh Kumar, 2019. "Simple and Efficient Computational Intelligence Strategies for Effective Collaborative Decisions," Future Internet, MDPI, vol. 11(1), pages 1-16, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:623720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.