Author
Listed:
- Jihua Zhang
- Lianguo Wang
- Yun Dong
- Yadong Chen
- Yang Jiang
- Huasheng Sun
- Jiarui Chen
- Yuqing Fan
Abstract
Water inrush happens occasionally during deeper roadways excavation. It is mainly due to the lack of understanding in the formation and development mechanism of cracks and its spatial distribution pattern under ground stress. In view of this, this paper used different stress levels to represent the fracture state of different parts of the surrounding rock of the deep roadway; CT detection technique is used to scan the fractured sandstone in the postpeak state; and the CT images under different confining pressures are thus obtained. The geometrical parameters such as area, length, and width of the crack are used to describe the distribution patterns based on CT images processing technique and statistical principle. These patterns are then analyzed under varying postpeak stress levels and confining pressures. The result shows that, as the area, length, and width of the cracks get larger, number of cracks increases with decreasing stress level; at different stress levels, sandstone crack area probability density, crack length probability density, and crack width probability density form exceptional, linear, and Gaussian distribution, respectively. The amount of confining pressure affects the size of cracks and the extent of expansion. This means that the higher the confining pressure is, the easier the internal crack will be penetrated and expanded and the bigger the cracks are, and the number of cracks gets lesser. Such research results can be used to describe the propagation and evolution law of cracks under different stress states of postpeak rock, which also provide an important basis for further analysis of its permeability and the stability of roadway surrounding rock.
Suggested Citation
Jihua Zhang & Lianguo Wang & Yun Dong & Yadong Chen & Yang Jiang & Huasheng Sun & Jiarui Chen & Yuqing Fan, 2019.
"Research on the Development Mechanism of Postpeak Cracks in Sandstone under Different Confining Pressures,"
Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, May.
Handle:
RePEc:hin:jnlmpe:6208207
DOI: 10.1155/2019/6208207
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:6208207. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.