IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/620425.html
   My bibliography  Save this article

Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

Author

Listed:
  • Imran Rahman
  • Pandian M. Vasant
  • Balbir Singh Mahinder Singh
  • M. Abdullah-Al-Wadud

Abstract

Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs) requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA) has been applied and compared with another member of swarm family, particle swarm optimization (PSO), considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

Suggested Citation

  • Imran Rahman & Pandian M. Vasant & Balbir Singh Mahinder Singh & M. Abdullah-Al-Wadud, 2015. "Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-10, July.
  • Handle: RePEc:hin:jnlmpe:620425
    DOI: 10.1155/2015/620425
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/620425.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/620425.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/620425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rawan Shabbar & Anemone Kasasbeh & Mohamed M. Ahmed, 2021. "Charging Station Allocation for Electric Vehicle Network Using Stochastic Modeling and Grey Wolf Optimization," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    2. Juan D. Velásquez & Lorena Cadavid & Carlos J. Franco, 2023. "Intelligence Techniques in Sustainable Energy: Analysis of a Decade of Advances," Energies, MDPI, vol. 16(19), pages 1-45, October.
    3. Khush Bakht & Syed Abdul Rahman Kashif & Muhammad Salman Fakhar & Irfan Ahmad Khan & Ghulam Abbas, 2023. "Accelerated Particle Swarm Optimization Algorithms Coupled with Analysis of Variance for Intelligent Charging of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 16(7), pages 1-23, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:620425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.